AD-R183 505 §0FTHRRE ARCHITECT/S WORKSTATION A TOOL FOR ADA 174

D
TRADEMARK) PROGRAM DEVELOPMENT(U) NAVAL UNDERNATER

SYSTEMS CENTER NEWPORT RI
UMCLASSIFIED NUSC-TD-6630

HWN

i
vl

P J FORTIER ET AL. 01 JUL &7
F/G 12/5

.-

TR
o R
= EEE

EEE m_umuum
|

2
= =

!

ﬂi

 mm——
——
—
—
——

i

|.4
===
——

MICROCOPY RESOLUTION TEST CHART

'~ —_ NATIONAL BUREAU OF STANDARDS-1963-2

2 i

- »

OTIC EILE_CORY

AD-A183 505

NUSC Technical Document 6630
1 July 1987

Software Architect’s Workstation:
A Tool For Ada Program Development

P. J. Fortier
P. A. Bergandy
Combat Centrol Systems Department

N. Bryden
Syscon Corp.

R. Charette
Computer Science Corp.

S. Trager
Softech, Inc.

DTIC

ELECTE
JUL 2 9 1987

Naval Underwater Systems Center

Newport, Rhode island / New London, Connecticut

Approved for public release; distribution unlimited.

'

PREFACE

-~

L e Dl

This report was prepared under NUSC Project
No. 63756a, Task Area No. E1D of the ''Software

- -
Eah

Technology for Adaptable Reliable Systems (STARS) .
Program," principal investigator P.J. Fortier (Code .
2222), NUSC program manager T.P. Conrad (Code 2211). "
The sponsoring activity is the Naval Sea Systems 5
Command, program manager P.J. Andrews (SEA-61R2). "
"
REVIEWED AND APPROVED: 1 JULY 1987 “
7
| &
5
ez LSS - 4
. * .
J.R. Short o
Head, Combat Control Systems Department q
L]
.
N
Iy
»
N
'
'
- l
nY
%
’
)
»
.
F
.I

[" S E% %] ¥ " e P W% % S S P¥el ha J R
AAGROAL AL AS AT RO O o/l ¥ s x N o USRS AL

ATATIT T Ad

OO0 a0 0 oS LY

- -, - - i - .,
~ Y AN b AT s*\’.'.’.f.'.f\’.’\f.’_.\"‘.
. L] L\d

REPORT DOCUMENTATION PAGE

Ta. REPORT SECURITY CLASSIFICATION 0 RESTRICTIVE MARKINGS
UNCLASSIFIED

T =t I T T v

2a. SECURITY CLASSIFICATION AUTHORITY 3 OISTRISUTION/ AVAILABILITY OF REPORT

Approved for public release;

2o OECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBEN(S)
TD 6630
68. NAME OF PERFORMING ORGANIZATION &b OFFICE SYMBOL 73. NAME OF MONITORING ORGANIZATION

If i
Naval Underwater Systems Ctr Cédéuﬁﬁ,

6¢. ADORESS (City, State, and 2IP Code) 7o ADORESS (City, State, and 21 Code)

Newport Laboratory
Newport, RI 02841-5047

8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT 10ENTIFICATION NUMBER
ORGANIZATION (f spplicable)
Naval Sea Systems Command SEA-61R2
8c. AODRESS (City, State. and 2iP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT Task WORK UNIT
Washington, DC 20362 ELEMENT NO. |NO NO. ACCESSION NO

1Y TITLE (Incluce Security Classification)
SOFTWARE ARCHITECT'S WORKSTATION: A TOOL FOR ADA PROGRAM DEVELOPMENT

*2 ’EISONAL Mg’ugl(ﬂ

Fortier, ., Bergandy, P.A., Bryden, N., Charette, R., and Trager, S.
*la TYPE OF REPORY 135 "ME COVERED 14 DATE OF REPORT gul. Month, Day) 'S PAGE COUNT
EROM 10 87-07-01 24
s SR o SR,

16 SUPPLEMENTARY NOTATION
An adaptation of a paper originally presented at the Hawaii International Conference

on Svstems Sciences, Januarv 1987.

17 COSATI CODES 18 SUBIECT TERMS (Continue on reverse f necessary and «Jentify by block number)
F1ELD GROUP SUS-GROUP Software Systems Development
J5 us Ada Computer Language

'9 AQSTRACT (Contiwue on reverse «f necessary and ientify by biock number)
b4

This report describes the software architect's workstation (SAW) -- a tool constructed
to aid designers of Ada code for real-time command, control, and communications
systems. The SAW is part of the STARS (software technology for adaptable reliable
svstems) software engineering initiative. The concepts associated with SAW development,
the methodology used, and the techniques that make up the methodology are described.
Also, a short example of surface-to-air missile simulation is presented to show the

application of the SAW to a real-world situation. o . - R
0 DSTRRLTON AVAILARIL'TY OF aBSTRACT 2 Avlsrnc' SECIMTY C_ASSISICATION
T onc.ass N mted B ame as v [DJornc sseas | UNCLASSIFIED
P —
120 NAME DF At bownu NDIVIDUAL 220 ' ONE (¢ rea Cooe) | 22¢ _owcl (T8
M ore B DR I ok il
DO FORM 1473, 84 man 83 APR el On 7By DO LIRS Ut QR BUITRD

All other 0d1t:0”s are ODOIete

TABLE OF CONIENTS

LIST OF ILLUSTRATIONS . .« e e eeccccnsenanconensesanancncnneacnans
ImoDUCTIoN.................................C.l..................l...

SOFTWARE BUILDING METHODOLOGY.....ceeteeesecccncnsccncccnncsannocns

Methodology Requirements.......cceeenicececenocnacnncannnns

Methodology Composition.......... cesecns ceescesssosecnsss ceesven
IDEF Technique.....ccovceceesceacescsssecensssoscnccssooccosas
SCRP Technique...coceveeccasscacseeascssncsscassscsasassasacasas
SAINT Language......ccco0veenee sececcccnssnens ceansas ceees
AICON Technique......coieeveesnnccans cececctessesncosannas
CSSIM. . ivveecreenancanns ssecseean ceeenas ceenene teessacccananes

ooo

REFERENCES. llllllllllllllll > e 0800800 8 s 00 0 LI B I B A BB A LB B B BN BRI I O I B I BN I

Acces3ion For

NTIS GRA&I
DTIC TAB

Unannounced O
Justification]

By
Di-tribqgion/_ B

Avetlability Codes
‘Avail and/or
Special

DM st

NN W

-—rwre w

W O ST W

Figure

ii

LIST OF ILLUSTRATIONS

Computer Software Development ProCess.......cccececeevoccccsscanas

Syntax of IDEF Functional Component......ccccceveee

Dat‘ Flo' Rel‘tion.hip.....'l.........I..'IlQ........“-l... lllll .

Activation of an Activity....cieccuiceeenencececcccacccscssasnsaanss

Sample of Active Agsociations......cccivencevccnnas

Simulation of a SAM System....c.cccocecrcccrcccacacencs

Behavior Diagram, Model Hierarchy, and
Activity Diagram for SAM System....... ceseccceace

Relationship of IDEF Behavior and
Activity Diagrams to SCRP Tablets................

Detailed View of Software System in Ada Iconic Form

Page

2

4

10

14

15

17

18

R
-

SOFTWARE ARCHITECT'S WORKSTATION:
A TOOL FOR ADA PROGRAM DEVELOPMENT

PR AL AE AL T

-

INTRODUCTION

- -
- O

The current state of software engineering practice in Department of
Defense software development reflects a number of serious shortcomings that
result in inadequate software systems. These inadequacies stem from one or a
combination of the following:

-
-

* Failure to meet the stated requirements of a design

&
* Inadequate or incorrect system design Iy
~
¢ Inadequate system performance ;

* Failure to properly address the man-in-the-loop interface adequately.
)
A first step in correcting these shortcomings is more rigorous and structured v
engineering of software systems instead of the typical software development "
process. ¢
A more structured approach to software development (i.e., a methodology) L
must provide integrated techniques that allow for the capture of the pertinent ~
aspects of the real-world system, along with the ability to refine and :
transform these aspects into software specifications and design. :
+*,

The software architect's workstation (SAW) is a tool comprising an

integrated set of methods and techniques to address the various portions of -
the software system development process (figure 1). -
*,
1 b
R

“‘O LI -' ... -J.I--‘a -'.~{ q’l.. -" -" - -)\'. -"\.. .‘.... .-.\J‘\ ".'\,\..'.-_\.‘\‘.\... R --_ .\ K '\..._ .\-‘. .

[) @ w w
A ;

$830013 uawdo[IAI(] 3aem3ljos 193ndwo) °1 3andyg

oML ONY
NOLLVNDRLN
MVMLIOS ONILSIL LN
ony
DING0D N30
orwiso
NDIS30
IV ovess SPR pm—
S1INININNOIY
WVMIIO8 | SISATYNY O
WYMLIOS
M3LTAS
LIEBNJO WA NOLNSAO NOLINISIO
ANINAOWD0 ONY ONLSEL ONV | SUVMIJIONS VALNINOD | g 1geon00 | suasmawnomy S1NINININOIN
NOLLONGOUY FUI0 | NOUVVDLLM ANBR4OTEARG NRLOAS WVMLIOS NILSAS
RILSAS IVMONVH I%3LSAS INOISSI
LNSRAC B0 ONY NOLLYONVA ONV NOLLYWOWXD
NOLLONOOUS ANINJO TBADA TWIO- TV NOLLVMASNONDO 14IN0D
™ Juveo » Suvea 1 Suvso

ALAILDY
NALSAS

SHLALOY
 WVYMLIOS

ISV
WA 3N
NILSAS

e

Cd

3

C

'

Sl P P

LN

PR

besc:

SOFTWARE BUILDING METHODOLOGY

METHODOLOGY REQUIREMENTS

A software building methodology must successfully produce and transform
real-world system requirements into a precise statement of the software
system's external behavior. It must possess a creative aspect that can help
derive the specifications, as well as an eagily used clerical aspect that can
document them. Moreover, the methodology must fully describe the interfaces,
modes of operation, and functions of the system. Important characteristics
are that it be minimal (produce a blackbox view), understandable, accurate,
precise, and easily adaptable.

The methodology must permit realization, -Ain some abstract form, of the
software system as described in the specifications. It must be able to
support abstraction, decomposition, and the notion of hierarchy; it must also
provide traceability and correctness analysis. Both the creative and clerical
aspects of the methodology must be supported by techniques such as information
hiding, abstraction of data types, stepwise refinement, data flow analysis,
and graphic decomposition.

METHODOLOGY COMPOSITION

The SAW's methodology is based on one that has recently been successfully
developed (references 1, 2, 3) to fulfill the above criteria, and that is
currently being extended by the Naval Underwater Systems Center (reference 4).
The methodology is an integrated approach for performing system/software
requirements analysis and for producing software requirements, specifications,
and designs for Ada* programs. It currently consists of five methods:

* The Air Force's IDEF modeling technique

e The Naval Research Laboratory's Software Cost Reduction Project
(SCRP) techniques

e The Air Force-developed SAINT simulation language
* The Ada Iconic Language Builder

¢ The Combat System Software Simulator.

IDEF Modeling Technique

The IDEF (integrated computer-aided manufacturing definitional methods)
comprises a set of structured definitional and analysis techniques for

*Ada is a trademark of the U.S. Department of Defense (Ada Joint
Programming Office).

-,

v

%Y

-

CTWTE AN S W

v v

N B W NI - RS B

AN IR

performing system analysis. This method provides a means of understanding and
managing systems complexity and structure via functional, data flow, and
behavioral perspectives. These perspectives allow for the modeling of a
system in terms of its functions, their interfunction relationships and
interfaces, information flow and content within the system , along with
dynamic interaction of the system with its environment.

IDEF, which is based on Softech's structured analysis and design
technique (SADT)™ (reference 5), has been used to model numerous systems.
The technique uses concepts in topdown organization, modularity, hierarchy,
and active relationships to describe systems under study.

The functional aspects provide a means of visualizing the structure of a
system and the static relationships between system functions. Each function
is described in terms of its activity, inputs to the function, outputs from
the function, and controls or constraints imposed on the function (figure 2).
To keep the level of detail manageable on a screen (or page), the IDEF
technique limits the number of functions to six (SADT™ developed this
restriction) (reference 5).

Such a functional description with its inputs, outputs, and controls
allows for describing relationships between functions such as precedence,
domain, and parallel or feedback conditions. These relationships are based on
how the functions are linked and associated with one another on the screen
(figure 3).

The behavioral view provided by IDEF defines the temporal nature of the
system being modeled. It provides a means of defining how the functions
interact with one another and their environment over time. As in the
functional view, IDEF uses the box as its main descriptor. The box in this
case has a different meaning. Its main components are the activation of
activity description, and the input and output event descriptions (figure 4).

The input events are used to initiate the activity, and the output events
result from the occurrence of the activity. To make the functional and
behavioral views meaningful, the behavioral model descriptions must be
associated with those of the functional model. That is, an activity
represents an action on a corresponding function(s) in the functional model.

A more detailed description of this technique can be found in reference 3.

CONTROLS
INPUT FUNCTION OUTPUT
> DESCRIPTION —

Figure 2. Syntax of IDEF Functional Component

DY I)

N A AN N N i A T A T A A AT AT TIPS W

_ A ot TR K bt

A A
B B8
PRECEDENCE DOMINANCE
N D s s | A —
—

PR ——— [

et 8 - A

o ¢ et 8
PARALLELISM FEEDBACK

Figure 3. Data Flow Relationships

EVENT DESCRIPTION _ | ::T:‘é:,}"',f&” EVENT DESCRIPTION

DESCRIPTION

Figure 4, Activation of an Activity

,oo PR - R R A AT e e e e, e e e e et e T T e e e
LSS AR CE RS LI g IR DR . o LT e T - \'3 '('::.'&,'J_.‘g:.)-'&-,.';i'-u&'—";- -

"~

WY

SCRP Technique

The software cost reduction program (SCRP) (reference 6) is a set of
formalized methods for specifying, designing, and documenting system
operational requirements and for identifying missing or conflicting
specifications. The emphasis in this technique is to have in place the
questions one needs to answer in system development before beginning to
collect and associate the answers. The technique has four major concepts:

* Separation of concerns

* Formal specification

¢ Abstract interfaces/information hiding
* Documentation.

The goal in separation of concerns is to link together (via the data base)
information that needs to be linked and keep separate items that should not be
linked. This concept limits or isolates the impact of changes on a system.
Formalization of specifications defines a formal nomenclature by which one can
describe the elements of a system. This allows removing the ambiguity of
English text-only specifications. The third concept, information hiding,
provides a means of isolating unrelated details from higher level components,
thereby providing for ease of change and evolution. Finally, documentation
(through a data base) allows organizing the class and content of information
necessary to specify a system. Only through rigorous application of these
concepts to a system can true benefits be realized.

SAINT Language

SAINT (systems analysis of integrated networks of tasks) is a simulation
language developed in the late 1970s (reference 7). SAINT provides a means of
modeling systems as a network of tasks that perform jobs and produce or
consume resources.

To make this tool a part of the methodology, its elements must be mapped
to those of the previous methods. A SAINT network of tasks is equivalent or
can be mapped to a set of diagrams (functional and behavioral) in IDEF. In
addition, IDEF resources equate to SAINT resources, and information flow in
IDEF equates to attributes in SAINT. Using these relationships, one can
construct a SAINT model that can be used to examine the present specification
of a system. The model will give insight into correctness of the system and
will indicate areas in need of refinement or change.

¥ . v 'A—ll ‘I_.‘f_'f‘f.f‘(! 'sa e :n N T

¥

“a

N %" Y e

')
o A"

AICON Technique

AICON (Ada iconic builder technique) provides the capability to perform
high~level conceptualization of Ada software designs using graphic techniques.
The tool is based on Buhr's work (reference 8) on graphic design of Ada
programs. The tool extracts information develcped in the IDEF and SCRP models
to construct the initial Ada code. This is currently performed through the
mapping of IDEF functions and SCRP activations to Ada packages, tasks, etc,
via a data base of stored items or through viewing previously stored
information and manually extracting the pertinent aspects for the Ada
description. N

The basic notation available for use at this level consists of a set of

editing and query modes to construct, change, or examine designs using icons
and text.

The basic icons available include the package, task, subprogram,
uncommitted module, data, data flow, access connection, sequence number,
guard, and labels. Each of these relates to an underlying template that
provides a means of describing the object in greater detail. The example
given later in this report shows some details of the presentation.

Using the AICON tool, one can interactively develop an Ada program from
the IDEF and SCRP description in a topdown fashion.

The use of icons instead of text-only presentation in the development of
software provides users with much more feedback (in terms of perceptual
information) upon which to judge design decisions. As more use is made of
this tool, details of benefits will be published.

css1M

CSSIM (combat system software simulator) is an analysis tool that
provides the means of analyzing tradeoffs between hardware and software during
a systems design (reference 4).. The tool provides the ability to extract
information from a design data base, and to model these at varying levels.
Users select architectural components to model (e.g., CPUs, networks, sensor
devices, secondary storage devices, operating systems, data base systems,
etc.) from a component data case. If components are not available, templates
are produced that allow users to build their own class of components based on
a framework. Once the system hardware has been collected and formed, the user
maps his software design onto the hardware system and can then model the
operation of his software design instead of the postulated hardware design.
Doing this iteratively, for either the hardware or the software, supplies a
means of comparatively analyzing various combinations of a design (hardware/
software). This tool provides a means of finding and correcting flaws before
producing a final specifivation and design.

g

[sy i

PR

-

.
»
»
-
-
h
-
b
-

o i W
2,

»
.

S

-
r
- _l._ ‘. -

. ’J 1?‘.\)\ 2 3

-
]

-’ '-

WA

.

RS

LAy

UL |l'~l.0‘¢
VRN DY iat
EAYY LY KN)
DRORAYINNI

ety e ety 4 et et et
G R P T ST WA TSR
S B Rt e et gyt cor g

INTEGRATION OF INFORMATION

The goal of employing multiple integrated methods or tools, each of which
offers a different view of a system, is to provide a consistent view of all
aspects of the system design to anyone using the tools. To provide this
integration and consistent view implies a data base. This data base and its
multiple views provide a means of integrating the various tool outputs into
one system view usable by all (refer to figure 1).

This approach implies the selection of a data model that is easily
adaptable to a wide range of internal storage structures. To meet this
requirement, the SAW developers have examined and embraced the use of an
object-based storage environment that provides a means of associating an
object with any data type (graphic, text, icon, table, program, template,
etc.).

The use of this type of data base has allowed easy association of the
various icons and their templates with one another (e.g., figures 5).

The key elements of this data base are the definition of the core
templates and their relationships. The iterative application of the data
structure to the offered data, along with their associated activations,
provides the integrated environment for SAW to operate within. This data base
supplies the framework for management controls on SAW tools. Details of the
data base, its schema design, and use will be published in future reports.

L T TUURETTEE TN TNV WY 0y Sl Sy LA O . U R S i . T T A T R N I S -\'-'-",\.'i

...,...- '_.1 ----- -........
.f. o s..\ ﬂ ..f.. ﬂ‘.
ate e PI \\\\--\ v B 0 T e

SUOTIRID0SBY dATI0V JO dydweg *¢ asanByry

NP N WATTD
m PPN f Sémm vt WS IS 00
N pEmPRS S T PN BN T WS VY

W

=

Iy a swy
~

sepes teD

IDB: uld

WHVI0 ALIALIY _

10

B e o e S B B by

PRSI IS R T IPL VR W Tl 0T B S 0™ o9

- A Ny e

ol e -« P A LK LN i Padind 2 L2FPI » KOy AN AL o8 -L-L Dy Py e s e P d SIS x.

11

(P,7U0)) SUOIIBIDOSSY SAIIDY jo ajdweg °¢ a2indyy

‘oML UMME Ty A SO 0f WD LIS
ST €00 20 JRON) OTDY W 2 AT PR By
o v S e o D - | e
wosedan iy EANS -
O TR NS BN 2 WS (WA 0 We) W
0 NIV YA WML 1B /P B /D NI
O Sq OWN] SDRN THNNDY |0 Jas iy

. S
(mnama \ \

SR Goe wetwe 7) . BLUAED
ooy BOO® | g

\ NSO e §) - N0 (sm oue
| A yorynOan W) SHINE

[/ (Wowm 1000 “sww]) (DN
[T

I LD
RN

(RS oy 'wIeew et) UM

AN

SEW /1w 1 0708 ¥0 10 - TN, TREOW

QR Qo - (0)

108 Surmn) shoay Y VDL /DAY W) /DA PR
798V 81 IMDIT Fwearn] Aanoro M) e
S8 ITOS g ¥ OIS W] W W/ WESAL/

USER INTERACTION

! The user interface is of extreme importance to the success of the SAW as
‘ a software architect's tool. This interface comprises the method and the
mechanisms used to provide information to the users. These mechanisms for
manipulating information must be consistent, friendly, helpful, and
understandable for best results.

To achieve these objectives, the SAW uses an object orientation for the

screen interface. Functions available are shown either as icons (as in the
Apple Macintosh™) or as pulldown menus. The icons and menus provide the
available options to users. To examine the screen, users employ a mouse to
move the cursor about and select the proper function to perform or object to

. manipulate. Once an option has been selected, the next level of options is
brought up into active mode. This process occurs for all levels of the
methods and across methods. Once selected, objects can be expanded to view
internals or contracted to further recess detailing.

The following example involving the surface-to-air missile (SAM)
simulator will help to clarify and highlight some of the qualities of the SAW
technique.

The SAM simulator (figure 6) consists of a simulated track TV camera,
track radar, acquisition radar, and three control consoles requiring a
three-person crew. The crew responsibilities are, in a general sense, divided
into three areas; the Fire Control Officer is the commander and is responsible
for aircraft acquisition, missile launching, and overall control of the
system. The other two operators, elevation and azimuth, are responsible for
tracking the threat aircraft in either the O-plane or the azimuth-elevation
plane so that effective threat evaluation and missile launch/intercept can
take place.

During the incoming attack, the crew is responsible for evaluating c3
(command, control, and communications) information, for acquiring the aircraft
with the acquisition radar, for transitioning from the acquisition mode to the
track mode, for tracking the aircraft with the track radar, and for launching
missiles at the aircraft. These activities are optimized by effectively
evaluating c3, TV, and radar data, and by communications among the crew.

To design such a system, a user would begin by formulating an
understanding of the system, and then developing the IDEF activity and
behavior diagrams in a hierarchical topdown fashion (e.g., figure 7). All
items on the screen are viewed as objects and therefore have associated with
them their own context. By defining/selecting an item, a software architect
can construct or examine underlying templates that are automatically provided
upon item creation as part of its data base object definition (see figure 5).
The user iteratively develops the diagrams in a topdown fashion and fills in
the generated templates to construct a nearly complete description of the
system being studied.

Figure 6. Simulation of a SAM System

®2184Ag WVS 3103 weadeyq A11A1310V
pue ‘AydieisiH [9poW ‘weilelq iorAwyag -/ dInByy

[o)

{
;

e i DU . *
e SANRS | VRS LENAUS [T Loveou U 8AOULERO L4VVONY ¥O Lo -
* ﬂ AN STV 108 oy DUBOVONSSY 31V IVBSU
LB #
!!i :!14!182!!
[~ mvwowie Adiv | | Svwowe worwieee |
AP GRS S ARG S 5 . [[

SNOLIVY TVANIINOWMIAND SY TT3M SV WAiSAS
L 0 SUHRLIWVUW TYNOLIVESLO JOTION! TIM NOLLY WIS 341

BdAL NMONINN 40 LIVEINY JTONE V -
LNGRANDA NVE ML -
SUOIVUISO0 OML -

U440 OULNOD R -

DNMMOTIO IHL JWY GIOMON SIALI ‘W3 WOUd
MNOLIVINWNS VS BHL Y04 LXALNCD JHL SIHENEVISI SHL

LIVENIY NVS JO ANINIOVOND

LR P4 P R N T A P N T A A O .
‘Q.@: NG NG L NN e e e S

. B . DO e ta et .

ot e . TP SRS

To further enhance the completeness of the design, the user develops the
SCRP descriptions. These provide a means of capturing information not readily
available from the IDEF models; included in this are such factors as:

e Distinguishing characteristics of the computer environment
(rotary switch, touch panel, etc.

* [aput and output data items

e Modes of operation

¢ Time-independent description functions
¢ Timing requirements

e Accuracy constraints on functions

¢ Undesired event responses

* Required subsets

* Expected types of changes

* Sources for further information.

Figure 8 shows the relationship of IDEF behavior and activity diagram
components to SCRP tablets. (Details of SCRP use and interpretations can be
found in references 1, 4, and 6.) These relationahips can be used to
construct SAINT task models to study the operations of the postulated system.
Through iterative modeling and refinement of IDEF/SCRP descriptions, a sound
design can be realized.

Once a high-level gystem design is fairly stable, the user develops the
detailed software architecture using the AICON tool. For example, using the
information associated with activity diagram, a user can construct a
high-level design of the system. This high-level design may then be further
broken down into submodes with details of the specified interfaces. The
graphic capabilities of the AICON tool allow the user to create data flow
graphs and structure graphs of the system under design.

By iterating in a topdown fashion, a detailed view of the software system
in Ada iconic form (figure 9) can be developed. This detailed vies of the Ada
program can then be automatically turned into Ada code to examine its
correctnesa, or it can be turned over to CSSIM to be analyzed against the
postulated hardware design.

Using CSSIM, the user builds models of the hardware and software
architecture and examines various mappings of one to the other. These models
allow tuning of the system load before actual construction or coding is
performed. CSSIM is in detail in reference 9.

@MMMYOAICMM““O’“L‘"

TRACK LOCK-OM LOST I HAND-OPP

A/C PERCEIVED
)
THREAY
TRACK
1 2

=Aceuun AIC
TRACK ACHIEVED

| sesavion oaonas

EVALUATE

ENGAQEMENT | sOTH WESNBS
A Gicven on @1

1 } A/C DRSTROVED
Ot /@ AND /A2
90 #co
summunsll
TABLE TITLE: INTERCEPT THREAT AIRCRAFT MODE CONDITIONS MODE CONDITION
ITHREATIND// = | /IACTRACLKL// = Other
] [] w‘.m
Acquire SNothrests on IINUMMISLH// <2
$Nolocks
Trock $Threets - IINUMMISLI// < 2
(//INUMMISLNH// = 0)
Launch $Threats sLocks OR (//NUMMISLH// = 1 AND
1Second launch dec! = $YesS$)
. (//INUMMISLH// = 1 AND
* Evei€ngege $Threets - 1Second leunch dec! = $NoS)
OR //NUMMISLH// = 2

Figure 8. Relationship of IDEF Behavior and Activity Diagrams
to SCRP Tablets

L

" .

7L .

_‘;\. .

¢
[N ALY

w104 Jju0d] ®pY U} we19kg 21¥A)JOS JO MIIA PR[I®IN] 6 2an®14

e e et e B s Bt

e e el kS S a

18

i
i
o
s
@l

e *a®y " w0 0 "
N AT

s ms s mES L4VHEONIV 1VIUNL 1d3IOHIINI

SUMMARY

The software architect's workstation (SAW) is a tool constructed to aid
designers of Ada code for real-time c3 systems. The SAW's methodology
comprises a number of integrated methods and techniques for evaluating the
various portions of the software development process. The methodology
provides a means of effectively describing a software system in terms of its
structure, behavior, and information flow, and of documenting a wide rangs of
information associated with these views.

The biggest challenge in the development of the SAW has been (and will
continue to be) the integration of the items within the data base. The object
view of data and the qualities embedded within this view have been found to
supply the wanted effect. That is, thay have provided a means of storing,
retrieving, and associating various data types within the schema model without
complex translations and processing.

Future reports will address the problems, solutions, and findings
associated with implementing the data base on a workstation, as well as the
use of this tool in the requirements analysis, specification, design, and
management of real-time c3 system software for DoD projects.

E%

Cw s v

s

a
1

REFERENCES

R. Charette, "SOEM: Putting Theories into Practice,'" Third International
Workshop on Software Specifications and Design, August 1985,

R. Charette and R. Wallace, "A Methodology for Addressing System
Operability Issues," IEEE/NAECON 85 Proceedings, May 1985.

R. Wallace, J. Stockenberg, and R. Charette, A United Methodology for
Developing Systems, McGraw-Hill, New York, 1987.

P. Fortier and L.D. Juttelstad, "Real Time Hardware/Software Simulation,
Design and Use as a Performance Evaluation and Prediction Tool,"
Proceedings of 16th Hawaii International Conference on Systems Sciences,
January 1983.

D. Rogs, "Structured Analysis (SA): A Language for Communicating Ideas,"
IEEE Transactions on Software Engineering, vol 17, no. 7, July 1977.

K. Henninger, R. Parker, D. Parnus, and J. Shore, '"Software Requirements
for the A7B Aircraft,” NRL Memorandum Report 3876, Naval Research
Laboratory, Washington, DC, November 1978.

D. Seifert and G. Chubb, "SAINT: A Combined Simulation Language for
Modeling Large Complex Systems,'" Report AMRL-TR-78-48, Aerospace Medical
Research Laboratory, Wright-Patterson Air Force Base, Ohio, 1978.

R.J. A. Buhr, System Design with Ada, Prentice Hall, Englewood Cliffs,
NJ, 1984,

P. Fortier, '"Generalized Simulation Model for the Evaluation of Local
Computer Networks," Proceedings of the 15th HICSS, January 1982.

INITIAL DISTRIBUTION LIST

Addressee No. of Copies
NOSC 1
: NSWC, White Oak 1

- DTIC 12

)
.
H
K
¥
H
<
-
.
3
.
>
o
e
-
-
-
s s

e
>
>

-
s
o)
o

.

»
o
Ll
’

T
<,

’
Ca’
of

W
f','g:‘

’\ ..

-,

[2 % Y

"
2%

e

¥

0

»

v
¢

